Физические параметры молекулярных сгустков в области звездообразования S254-S258

Е. А. Попова¹, Д. А. Ладейщиков¹, М. С. Кирсанова², А. М. Соболев¹

¹ Уральский федеральный университет ² Институт астрономии РАН

Рисунок 2. Карты интегральной антенной температуры линий CS(2-1) (панель слева) и HCO⁺ (1-0) (панель справа). Красными окружностями показаны видимые размеры областей HII на изображениях DSS-R. Спектры для некоторых направлений показаны во врезках. Контуры для линии HCO⁺(1-0) (панель справа) нанесены от 0.6 К км с⁻¹ до 5.6 К км с⁻¹ с шагом 0.45 К км с⁻¹. Для карты в линии CS(2-1) (панель слева) контуры нанесены от 0.56 К км с⁻¹ до 9.13 К км с⁻¹ с шагом 0.78 К км с⁻¹.

В работе были определены лучевые концентрации и массы газа по различным трассерам газа и пыли, в том числе по излучению различных линий молекулы СО, поглощению света в ближнем ИК-диапазоне и излучению пыли по данным Bolocam и Herschel. Карты лучевых концентраций, полученные по ним, представлены на Рисунке 1. По линиям-трассерам плотного газа CS(2-1) и HCO⁺(1-0) получены оценки оптической толщины и температуры возбуждения в отдельных направлениях (на Рисунке 2 они показаны крестами).

Здесь были исследованы молекулярные сгустки, связанные со скоплениями МЗО из работы [1]. Границы сгустков получены из контуров лучевой концентрации по данным ViaLactea (Herschel) [1]: 5.8×10^{21} см⁻² для S258, G192.63-0.00, G192.75-0.08, G192.69-0.25 и 8.9×10^{21} см⁻² для областей S255N и S256-south. В связи с отсутствием излучения Herschel в сгустках G192.75-0.00 и G192.54-0.15 использованы контуры плотности МЗО на уровне пяти звезд пк⁻² из работы [1] как границы этих сгустков. Расстояние до региона S254-S258 принято равным 1.59 кпк.

По имеющимся данным было проанализировано распределение вещества в регионе S254-S258 и степень соответствия найденных физических параметров по различным трассерам.

Трассеры высокоплотного газа: CS, HCO+. Расчет лучевой концентрации. Оптическая толщина

Для расчёта лучевой концентрации молекул необходимо знание по крайней мере двух линий (основная и менее обильная изотопическая разновидность) для однозначного определения температуры возбуждения и оптической толщины. В нашем случае мы имеем карты CS и HCO⁺, но данные по линиям молекул H¹³CO⁺ и C³⁴S доступны только для шести положений вблизи центрального яркого скопления S255N. Таким образом, лучевая концентрация может быть рассчитана однозначно только в направлении с доступными значениями интенсивностей линий молекул C³⁴S и H¹³CO⁺.

В Таблице 1 представлены наблюдаемые параметры линий С³⁴S и H¹³CO⁺ вместе с данными CS и HCO⁺ для одинаковых направлений для сравнения интенсивностей, что позволяет рассчитать лучевые концентрации и оптические толщины линий. Каждая точка наблюдений, представленная в Таблице 1, также обозначена крестом на Рисунке 2.

В работе была получена оценка оптической толщины в центре линии из отношения интенсивностей $T_R(C^{34}S)/T_R(CS)$ и $T_R(H^{13}CO^+)/T_R(HCO^+)$ с использованием следующей формулы (1):

$$\frac{R(C^{34}S, H^{13}CO^{+})}{T_{R}(CS, HCO^{+})} = \frac{1 - e^{-\tau_{0}/R}}{1 - e^{-\tau_{0}}},$$

где τ_0 это оптическая толщина в центре линии. Аналогичная формула использована для расчёта интегральной оптической толщины, но с использованием интегральной антенной температуры. Отношение обилий принято равным R(³⁴S)/R(³²S)=22 и R(¹²C)/(R(¹³C)=80. Температура возбуждения получена из численного решения уравнения переноса излучения: $T_{mb} = [J_{\nu}(T_{ex}) - J_{\nu}(T_{bg})](1-exp(-\tau_0))$, где J_{ν} - модифицированная функция Планка $J_{\nu}(T) = (h\nu/k)/exp(h\nu/k/T) - 1)$.

Лучевая концентрация CS и HCO⁺ в предположении локального термодинамического равновесия (ЛТР) была рассчитана с использованием подхода, описанного в [5].

$$_{\text{thin}} = \frac{3h}{8\pi^3 S\mu^2 R_i} \times \frac{Q_{\text{rot}}}{g_J g_K g_I} \times \frac{\exp(\frac{E_u}{kT_{ex}})}{\exp\left(\frac{h\nu}{k/T_{ex}}\right) - 1} \times \frac{1}{J_\nu(T_{ex}) - J_\nu(T_{bg})} \int \frac{T_{mb} d\nu}{f},$$

где S = J2/(J[2J + 1]), g_J = 2J + 1, g_K = 1, g_I = 1, вращательная функция распределения $Q_{rot} \simeq kT_{ex}/h/B + 1/3$,и модифицированная функция Планка J_v(T)). Фактор заполнения диаграммы принят равным f = 1, T_{bg} = 2.7. Так как линии CS и HCO⁺ являются оптически толстыми ($\tau \ge 1$), в расчёт лучевой концентрации введён фактор коррекции оптической толщины из [6] : N_{tot} = N_{thin} $\tau/1 - \exp(\tau)$, где τ – интегральная оптическая толщина. Вращательная константа B_{rot} и дипольный момент µ были взяты из базы данных Кёльна для молекулярной спектроскопии, энергия верхнего уровня E_u берется из базы данных атомов и молекул Лейдена. Результаты расчетов лучевой концентрации в направлении 5 точек для молекул CS и HCO⁺ представлены в Таблице 1.

Данные ¹³СО(2-1) и ¹³СО(1-0). Температура возбуждения. Определение массы сгустков

Расчет лучевой концентрации СО выполнен с помощью той же техники, которая описана выше. В формуле 2 для молекулы СО мы используем значение S = J2/(J[2J + 1]), как описано в [5]. В первую очередь оба перехода молекулы СО: (1-0) [1] и (2-1) [3] были использованы для получения независимых оценок температуры возбуждения и оптический толщины. Температура возбуждения определена из оптически толстой линии ¹²СО ($\tau \gg 1$) с помощью решения уравнения переноса излучения:

$$T_{ex} = T_0 / \ln \left(1 + \frac{T_0}{T_B^{12} + T_0 / (e^{T_0 / T_{bg}} - 1)} \right),$$

где T_B^{12} – яркостная температура линии ¹²CO в пике. Коэффициент $T_0 = h\nu/k$ равен 5.53 К для линии ¹²CO(1-0) и 11.06 К для линии ¹²CO(2-1). В данном случае принят во внимание микроволновый фон $T_{bg} = 2.7$ К. Здесь считается, что $T_B = T_{mb}$, так как средний размер источника в линиях излучения молекул ¹²CO и ¹³CO больше чем размер диаграммы направленности. Оценка оптической толщины (пиковой и интегральной) произведена по отношению интенсивностей линий ¹²CO(1-0) и ¹³CO(1-0) с использованием формулы (1).

Анализ полученных значений оптических толщин указывает, что переход (1-0) является более оптически тонким, а значит он более глубоко отражает структуру молекулярного облака. Именно данные в переходе (1-0) будут использованы для оценки лучевой концентрации СО.

Лучевая концентрация CO рассчитана по формуле (2) для перехода (1-0) с использованием фактора коррекции оптической толщины. Перевод из N(CO) в N(H₂) произведён с помощью отношения обилия $[CO]/[H_2] = 8 \times 10^{-5}$. Масса для каждого пикселя карты рассчитана по следующему выражению: $M = N(H_2)\mu_{H_2}m_HA$, где $\mu_{H_2} = 2.8 - 3$ то средний молекулярный вес межзвездной среды, $m_H - 3$ то масса атома водорода, A - площадь одного пикселя в см². Массы молекулярных сгустков рассчитаны с помощью интегрирования карт масс на пиксель по контурам сгустков.

Данные в континууме на 1.1 мм (Bolocam)

Лучевая концентрация, рассчитанная из излучения пыли на 1.1 мм, зависит от температуры пыли, которая меняется с положением. Это приводит к существенным различиям между лучевой концентрацией по данным Bolocam и другими трассерами. Мы полагаем, что газ и пыль связаны столкновительно, т.е. делаем упрощающее предположение, что $T_d = T_{K}$. Затем мы использовали формулы Для расчёта лучевой концентрации газа использовалась формула из [7].

где S_{1.1} это плотность потока в Ян на 1.1 мм.

$$N(H_2) = 2.19 \times 10^{22} [e^{13.0/T_d} - 1] S_{1.1} (cm^{-2}),$$

(4)

(1)

(2)

(3)

Поглощение света в ближнем ИК-диапазоне

Карты поглощения так же были использованы для расчета лучевой концентрации газа в области S254-S258. Они были построены по фотометрическим данным обзоров UKIDSS и 2MASS в ближнем инфракрасном диапазоне с помощью метода NICEST, реализация которого описана в работе [8]. Метод основан на сравнении наблюдаемых цветов в полосах J, H и K с собственными цветами звезд без поглощения. Для перевода из поглощения в лучевую концентрацию газа использовано соотношение $N(H_2 + H)/A_V = 1.87 \times 10^{21} (\text{см}^{-2}\text{м}^{-1})$ [9]. Следует отметить, что карты поглощения, как и данные Herschel, трассируют как ионизованный и молекулярный газ (H₂ + H). Поэтому между массой газа по линиям CO, которые трассируют только молекулярный газ (H₂) и массой газа по поглощению могут быть расхождения. Различные параметры сгустков по разным трассерам приведены в Таблице 2 и на Рисунке 3.

Рисунок 1. Панели 1-5: карты лучевой концентрации газа, полученные с использованием различных трассеров газа и пыли в области S254-S258, включая карту из базы данных VeaLactea [2], карту ¹³CO(2-1) [3], карту ¹³CO(1-0) [1], карту поглощения A_J с разрешением в 1' и карту излучения Bolocam 1.1 мкм [4]. На первой панели контуры показаны для лучевой концентрации в $5.8 \,\mu 8.9 \times 10^{21} \,\mathrm{cm}^{-2}$. На каждой панели молекулярные сгустки, ассоциированные со звездными скоплениями, показаны жирными белой и бирюзовой толстыми линиями. Края молекулярных сгустков с белыми контурами получены при лучевой концентрации в $5.8 \times 10^{21} \,\mathrm{cm}^{-2}$, а те, что обозначены бирюзовыми контурами, получены при лучевой концентрации в $8.9 \times 10^{21} \,\mathrm{cm}^{-2}$. Последняя панель: карта пиковой температуры главного луча в линии HCO⁺(1-0) в наблюдениях Onsala. Красные окружности на каждой панели обозначают видимый радиус регионов HII из данных обзора DSS-R.

Таблица 1. Параметры линий трассеров высокоплотного газа для различных направлений, полученные путем вписывания гауссиан в наблюдаемые спектры. Центр располагается в точке с координатами α_{J2000}=6^h13^m4.1^s, δ_{J2000}=17°58′44″. Значения в скобках -- значения формальной ошибки определения параметров из программы CLASS. Положения, обозначенные * имеют сдвиг 8.7″ по прямому восхождению для различных линий. τ₀ это оптическая толщина в центре линии, Тех – температура возбуждения линии, ∫т – интегральная оптическая толщина

Line	Point	Δα	Δδ	V _{LSR}	$\Delta \mathbf{V}$	T ^{peak}	$\int \mathbf{T_{mb}}$	$ au_0$	$\int au d au$	T _{ex}	N _{tot}
		"	"	km s-1	km s-1	К	K km s-1	К		К	$10^{14}{ m cm}^{-2}$
CS		-32.8	-4	7.415 (0.026)	2.160 (0.063)	1.7651	4.0589 (0.102)	1.13	0.58	5.63	0.10
C34S		-32.8	-4	7.354 (0.076)	1.733 (0.202)	0.13157	0.24272 (0.023)				
HCO+	1	-32.8	-4	7.477 (0.019)	2.883 (0.043)	2.5122	7.7096 (0.101)	5.24	4.54	5.49	0.52
H13CO+		-32.8	-4	7.223 (0.081)	2.525 (0.220)	0.16016	0.43052 (0.030)				
C18O		-32.8	-4	6.874 (0.031)	2.030 (0.071)	1.1252	2.4317 (0.075)				
HCO+	2	-111.2	116	8.219 (0.029)	3.082 (0.071)	3.2564	10.682 (0.206)	5.05	6.63	6.27	1.37
H13CO+	2	-111.2	116	8.802 (0.117)	4.051 (0.277)	0.19806	0.85418 (0.050)				
CS		-112.8	-4	6.971 (0.009)	2.221 (0.020)	6.1134	14.454 (0.115)	3.19	2.37	9.53	1.74
C34S		-112.8	-4	7.098 (0.016)	1.784 (0.037)	0.85823	1.6299 (0.029)				
HCO+	3	-112.8	-4	6.981 (0.012)	2.965 (0.027)	4.3349	13.683 (0.111)	13.01	7.99	7.37	2.62
H13CO+		-112.8	-4	6.670 (0.026)	1.865 (0.066)	0.65515	1.3004 (0.038)				
C18O		-112.8	-4	6.736 (0.032)	2.151 (0.078)	1.9621	4.4933 (0.134)				
CS		-152.8	36	7.294 (0.007)	2.620 (0.017)	9.9861	27.851 (0.151)	5.14	3.61	13.25	6.31
C34S	1*	-144.1	36	7.292 (0.016)	1.940 (0.041)	2.0951	4.3271 (0.075)				
HCO+	4.	-152.8	36	7.626 (0.019)	3.858 (0.046)	4.8813	20.046 (0.206)				
H13CO+		-144.1	36	7.064 (0.083)	3.072 (0.180)	0.45715	1.4950 (0.079)				
CS		-151.2	96	8.530 (0.012)	3.228 (0.029)	7.3593	25.284 (0.203)	4.59	3.67	10.61	4.57
C34S	5	-151.2	96	8.431 (0.021)	2.668 (0.049)	1.4045	3.9882 (0.065)				
HCO+	5	-151.2	96	8.860 (0.013)	3.106 (0.032)	6.7934	22.462 (0.195)	7.53	7.77	9.88	4.18
H13CO+		-151.2	96	8.756 (0.061)	3.197 (0.149)	0.61146	2.0811 (0.082)				
HCO+	6	-191.2	116	8.791 (0.035)	2.811 (0.089)	2.7956	8.3666 (0.216)				

Таблица 2. Массы, средние лучевые концентрации и оценки температур молекулярных сгустков в области звёздообразования S254-S258 из различных трассеров газа и пыли.

Название
сгустка
$$\frac{N(H_2), 10^{21} \text{ см}^{-2}}{70-500 \ \mu\text{M}} = \frac{160-500 \ \mu\text{M}}{160-500 \ \mu\text{M}} = \frac{CO}{(1-0)} = \frac{11 \ \text{MM}}{1.1 \ \text{MM}}$$

Распределение вещества в регионе по различным трассерам

Скопления были разделены на два основных типа: основное облако газа и изолированные сгустки. Скопления S258, G192.63-0.00, S255N и S256-south имеют газовые мосты в картах CO и поглощения, т.е. они непрерывно связаны между собой. Таким образом, они могут рассматриваться как различные части главного молекулярного облака в области S254-S258. Скопления G192.75-0.00, G192.69-0.25 и G192.75-0.08 расположены на некотором расстоянии от основного молекулярного облака и не имеют газовых мостов к основному облаку по всем доступным трассерам (¹³CO(1-0), ¹³CO(2-1), поглощение, ViaLactea,

Рисунок 3. Массы (верхняя панель), средние лучевые концентрации (средняя панель) и средние температуры (нижняя панель) молекулярных сгустков, ассоциированных со звездными скоплениями в регионе \$254-\$258.

	70-300 µm	$100-300 \mu\text{M}$		(1-0)	1.1 MM
S255N	19.34	39.96	26.35	47.56	13.51
S256-south	12.12	17.56	19.41	23.64	1.45
G192.63-0.00	8.13	11.11	11.44	16.9	1.2
S258	8.31	14.31	16.35	18.94	4.59
G192.75-0.08	8.69	14.5	18.12	10.84	1.66
G192.69-0.25	7.23	12.81	8.44	9.27	0.96
G192.75-0.00	3.28	8.23	7.96	7.97	0.20

Harrawya	Macca ci ycika, M _o							
пазвание	Her	٨	CO	Bolocam				
сгустка	70-500 μм	160-500 μм	A _J	(1-0)	1.1 мм			
S255N	1285	2812	1700	2638	875			
S256-south	1399	2158	2267	2669	170			
G192.63-0.00	431	621	616	886	62			
S258	218	399	445	524	117			
G192.75-0.08	339	603	676	576	64			
G192.69-0.25	117	219	135	117	15			
G192.75-0.00	34	92	89	71	2			

Порранию	T _{du}	_{st} , K	T _{ex} , K		
Пазвание	Hers	schel	CO		
CI YCI Ka	70-500 μм	160-500 μм	(1-0)	(2-1)	
S255N	20.11	20.18	26.21	25.18	
S256-south	15.53	16.97	20.6	18.89	
G192.63-0.00	17.55	19.88	22.47	20.68	
S258	19.18	20.74	18.88	17.36	
G192.75-0.08	13.78	14.39	12.43	10.95	
G192.69-0.25	13.67	14.2	12.24	10.96	
G192.75-0.00	14.93	15.3	13.35	12.56	

Bolocam). Поэтому эти скопления могут рассматриваться как изолированные сгустки по имеющимся данным. Но при появлении данных по излучению плотного газа в пространстве между сгустками данный вывод может быть пересмотрен.

Были проанализированы карты трассеров высокой плотности (карты в линиях HCO⁺(1–0) и CS(2–1)) для областей HII S258, S256, S255, S257 и звездных скоплений G192.75-0.08, G192.63-0.00, S256-south. Они подтверждают наличие плотного газа в рассматриваемых областях. Кроме того, данные в линии HCO⁺ показывают наличие непрерывной связи между между скоплениями S255N и S256-south на уровне 6 σ . Наличие газа высокой плотности в среде между сгустками говорит о том, что эти скопления могут быть физически и эволюционно связаны между собой. Между областями HII S255 и S258 не зарегистрировано такой связи с достаточным уровнем сигнала – эти регионы могут быть эволюционно не связаны друг с другом. Карта лучевой концентрации CO показывает диффузное излучение в среде между областями HII S255 и S258. Однако это излучение может быть вызвано большой протяженностью газа вдоль луча зрения, что приводит к высоким значениям лучевой концентрации.

Из анализа масс и лучевых концентраций каждого скопления обнаружено, что массы всех скоплений во всех трассерах газа за исключением Bolocam имеют значительную корреляцию. Оценка массы и лучевой концентрации из излучения Bolocam значительно ниже из-за влияния температуры – более холодные сгустки имеют меньшую интенсивность излучения. Таким образом, лучевая концентрация по ним занижена. Наибольшие значения лучевой концентрации обнаружены в направлении сгустка S255N (среднее значение составляет 4.0×10^{22} см⁻² по данным CO и Herschel). Наиболее массивные сгустки это S255N и и S256-south (~2600 M_☉ по данным CO).

Скопления S256-south и G192.75-0.08 проявляются на карте Bolocam на уровне 2-3*σ*, но другие трассеры проявляют относительно яркое излучение, связанное с этими скоплениями. Слабое излучение Bolocam в скоплении S256-south и G192.75-0.08 можно объяснить низкой средней температурой пыли в этих областях (13-15 K) по сравнению с другими областями (19-20 K для S255N и S258). Физическая интерпретация состоит в том, что карта Bolocam показывает нагретую пыль, которая определяет общую поступающую энергию от источников тепла. Излучение HCO⁺ показывает области фотодиссоциации, т.е. обнаруживает УФ-излучение от источников тепла. Интенсивность излучения HCO⁺(1-0) почти одинакова как для регионов S258 и S256-south (T_{mb} = 1.5 K). Однако, излучение Bolocam ярче в S258. Поэтому можно сделать вывод, что источник нагрева в области HII S258 создает больше теплового излучения, чем в области HII S256, что может быть связано с различием спектральных классов источников нагрева либо с несколькими источниками нагрева в регионе HII S258. Скопление M3O там может содержать несколько звезд, которые не продуцируют интенсивное УФ-излучение, а только нагревают окружающий газ. Это излучение может привести к более высокой температуре пыли в области S258 по сравнению с S256-south и более яркому излучению Bolocam на 1.1 мм. Однако для прояснения ситуации требуется больше данных для регионов S258 и S256-south.

Список литературы:

 Chavarria L. A., Allen L. E., Hora J. L. et al. Spitzer observations of the Massive star-forming Complex S254-S258: structure and evolution // Astrophys. J.– 2008. – Vol. 682. – P. 445–462.
 Marsh K. A., Whitworth A. P., Lomax O. et al. Multitemperature mapping of dust structures throughout the Galactic Plane using the PPMAP tool with Herschel Hi-GAL data // Mon. Not. R. Astron. Soc. – 2017. – Vol. 471, № 3. – P. 2730–2742.

[3] Bieging J. H., Peters W. L., Vila Vilaro B. et al. Sequential star formation in the Sh 254-258 molecular cloud: Heinrich Hertz Telescope Maps of CO J = 2-1 and 3-2 emission // Astron. J. - 2009. – Vol. 138. – P. 975–985.

[4] *Ginsburg A., Glenn J., Rosolowsky E. et al.* The Bolocam Galactic Plane Survey. IX. Data Release 2 and Outer Galaxy Extension // Astrophys. J. Suppl. Ser-2013. – Vol. 208. – P. 14.

[5] *Mangum J. G., Shirley Y. L.* How to Calculate Molecular Column Density // Public. Astron. Soc. Pacific. – 2015. – Vol. 127. – P. 266.

[6] *Goldsmith P., Langer W.* Population Diagram Analysis of Molecular Line Emission // Astrophys. J. – 1999. – Vol. 517. – P. 209–225.

[7] *Bally J., Aguirre J., Battersby C. et al.* The Bolocam Galactic Plane Survey: $\lambda = 1.1$ and 0.35 mm Dust Continuum Emission in the Galactic Center Region // Astrophys. J. – 2010. – Vol. 721. – P. 137–163.

[8] *Juvela M., Montillaud J.* Near-infrared extinction with discretised stellar colours // Astron. Astrophys. –2016. – Vol. 585. – P. A78.

[9] *Bohlin R. C., Savage B. D., Drake J. F.* A survey of interstellar H I from Lalpha absorption measurements. II. // Astrophys. J. – 1978. – Vol. 224. – P. 132–142.